
K 011C Ott ($11

Productivity Engineering in the UN1Xt Environment

Speed and Data Structures in Computer Algebra Systems

0') Technical Report

S. L. Graham

0 Principal Investigator

(415) 642-2059

"The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the U.S. Government."

Contract No. N00039-84-C-0089 '

August 7, 1984 - August 6, 1987 DI
ELECTE04

Arpa Order No. 4871 JULL 2 9MED

H

tUNIX is a trademark of AT&T Bell Laboratories 4

6

DIsrMnUTION SATEMEMf A
J, Approvod for public rm1.ase,

rYR- fc Unllndted

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

unlimited
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

The Regents of the Universit (If applicable)
of California SPAWAR

6c. ADDRESS (O'ty, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Berkeley, California 94720 Space and Naval Warfare Systems Command
Washington, DC 20363-5100

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

DARPA
8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT

Arlington, VA 22209 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

, SPEED AND DATA STRUCTURES IN COMPUTER ALGEBRA SYSTEMS

12. PERSONAL AUTHOR(S)

* Richard J. Fateman, Carl G. Ponder

13a. TYPE OF REPORT 13b. TIME COVERED 14. nfATr '" REPORT (Year, Month, Day) I5. PAGE COUNT
technical FROM TO A August 31,1987 ' , 8

16 SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

".9. ABSTRACT (Continue on reverse if necessary and identify by block number)

Enclosed in paper.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
COUNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

DO FORM 1473. 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

-.2* ~ I

Speed and Data Structures in Computer
Algebra Systems

Richard J. Fateman
Carl G. Ponder

Computer Science Division
University of California

Berkeley, CA. 94720

August 31, 1987

Abstract

Comparing the speed of computation in algebra systems is a peren-
nial occupation of system designers, algorithm implementors, and, more
recently, marketing personnel. At least some people have observed that
for many problems, the choice of a system makes much less difference
than the approach used to represent the problem. The mapping from
mathematics to a data representation and the choice of algorithms can
make significant, and separate, contributions to efficiency. Systems which
have the flexibility to provide several data structures and algorithms can
provide an advantage in this respect. Macsyma [1] is probably the system
with the largest selection, currently. On the other hand, Macsyma has
not taken advantage of recent advances such as the extensilyejuse of hash-
coding incorporated in the University of Waterloo's Mapli4#1 system. For
the one somewhat artificial benchmark we-ditruss in this paper, it appears
that the Maple system does considerably better than any representation
in Macsyma by precisely this mechnism.(f F--

1 Introduction

This paper was inspired by a problem posed in sales literature as an appropriate
benchmark for algebra systems. Consider the sequence of expressions defined
by fo = z and f,, = log(f,.._) for n) 0. Now compute various derivatives of
the f.'s.

There are two major components to the cost of computing this result: the
application of the chain rule, and the simplification or reordering of the terms in
the result. These costs can be separated out and individually reduced. A good .

design is one in which no redundant applications of the chain rule are needed, .

.0

and in which terms are naturally produced in an ordered arrangement. In such
a case the computation cost is about as low as possible. Of course, considering
the fact that the answer is fairly bulky, there is a certain irreducible cost.

2 Some programs

We begin by considering how to arrange this calculation in Macsyma three
different ways. The first is to use the most obvious representation. The second
is to examine the structure of the problem in more detail and choose a different
representation: declare a set of functions and their derivatives. The third way
is to combine the canonica] rational function package of Macsyma with the
previous approaches. In Macsyma, the briefest way we have come across to
request the 6th derivative of f':

:1[0):x $
f[n] :log(f in-I) $
diffCf [5) ,x,6)$

Using the general "default" representation implied by these statements, the
answer is clumsy, and so are the intermediate expressions. Macsyma does not
recognize most of the common subexpressions within the object being manipu-
lated and therefore repeatedly differentiates the various nested logarithms. In its
determination to simplify the result (and intermediate expressions), Macsyma
is faced with ordering 5th iterated logs, 4th iterated logs, etc, and must repeat-
edly traverse the subexpressions to find the depth of nesting. On a VAX8600
computer running UC Berkeley's "vaxima" implemented in Franz Lisp Opus 42,
this takes 33.7 seconds (plus an additional 11.3 seconds in "garbage-collection"
for reclaiming storage) 1 . The times for computing the sixth derivatives of f,
through f8 appear as curve "naive" in the first figure.

A second approach is to explicitly save the representation of the f functions
and merely inform Macsyma of the gradients of each of them. This takes more
effort, but is a step in the right direction, computationally:

DrIC

copy
(gradef(fl(x),1/x). NSPoC rC

gradf(f2(z),1/11(x)*diff(f1(x),x)), 6

gradef(f3(x). t/f2(x)*diff(f2(x) ,x)).

gradof(4(x). /f3Cx)diff (f3(x) ,x)).

gradof(fSCx),l/4(x)*diffCi4Cx),x)))$ cession For
di1f(f5(x) ,x,6)$ "3 A&I

1We re-ran these experiments on a a Sun Microsystems Sun-3/75, And the time taken on I C TAB
the Sun is twice as lons as the VAX 8600. L.w-ounced

2 By
Distribution/ ..
Availability Codes

. veail and/or

Dist Special

WV. K. * ~ K-~'N'~ J '~'~ "%

Now one advantage of this representation is the answer appears more com-
pactly in terms of the I functions. Another advantage is that the execution time
is somewhat shorter. It is easier for us or for the computer program to compare
15 and 14, which wear their "depths" on their faces, so to speak, and therefore
the simplification time is reduced. But not by much. The differentiation time is
not greatly reduced because each time the gradient of an 1-function is needed,
the gradient definition is applied, and therefore the derivative of f4, for exam-
pie, is repeatedly computed. The time for this on our VAX 8600 is 26 seconds
(plus 7.6 seconds in garbage collection). The time required by this method for
other examples is shown by curve "gradef" in the first figure.

A major step in the speedup is one which would cut down this repetition in
computing the derivatives. It turns out that the rational function package in
Macsyma computes with non-rational "kernels" fairly faithfully, and in differ-
entiating, computes the derivatives of kernels like 14, only once. The fact that
there is a unique representation for the derivatives, speeds the computation con-
siderably. Also contributing to the speed is the rational function manipulation
package's canonical internal representation which leads to a trimmed-down algo-
rithm for differentiation, and simplification. The answer is also more compact.

All that is required to use rational simplification is the conversion of some
basic data item to rat form. Since the form is contagious, all the rest will follow.
Alter the last line of the previous command to

diff(rat(f5(x)),x.6)$

The time has now been reduced dramatically to 3.03 seconds (plus 3.02
seconds in garbage collection). This time is shown as curve "rat" in the first
figure.

Here is another simplification of the problem2 . We have already reduced
a sequence of transcendental functions to a sequence of rational functions in
several variables. We can go one step further and reduce the rational functions
to polynomials. That is, the denominators can all be unity if we represent 1/x

by xi, and similarly represent 1/1 functions by Ii. We also heve written out
the gradient definitions, saving an additional 0.1 second on this run.

(grader(xi(x), -xi(x)-2),

grader(12i(x) ,-fli(x)-2*Xi)x)), ".)
gradsCf2i(x).-f12iCx)2* 1i(x) *zix)), .

grader(f3i(x) ,-i3i(x)"2*12i(x)efli(x)*zi x)),

gradof (I~i (), -15i(x) "2.f4i (x)*13i (x)*12i (x) *fli (x)*xi (s)),

grader(1Sx). f4i(x)*13i(x)*12i(x)*fli(x)*xi(x)))$
2A useful rule of thumb in using algebraic systerna is to try to convert the problem to a

simpler domain, to improve performance.

3

-S

diff(rat(1S(x)). x.6)$

Now the time is down to only 1.65 seconds (plus 1.5 more in garbage collec-
tion), so we have reduced the effective CPU time by a factor of 20. These appear
in the first figure as curve "naive + long grader in Macsyma's default general
representation, and as curve "rat + long grade" using rational functions.

This program has become a bit clumsy, and along the way we have discov-
ered that by using the canonical rational expression package we've saved a fair
amount of time. What happens if we abandon most of our cleverness, return
to to our first program, and by using rat coerce the computations to being in
rational form?

f [03 :X$
f n3 :=log(f En-1])$
diff (ra(f [S) ,x,6)$

This time is 3.5 seconds (plus 3.2 more in garbage collection). That is, we can
get a factor of almost 10 merely by this minor alteration and no mathematical
analysis. The time for this method is shown as curve "naive + rat" in the first
figure.

The second figure compares the fastest and slowest methods of computing
various derivatives of a fixed nested log. The fastest method is that given by
the third program above. The slowest is the first program.

3 Comparison to Maple

A significant question is how much of the advantages of this speedup can be
automatically conferred upon a calculation by an astute system. Clearly one
heuristic in Macsyma is to try rational representations when possible. It is
possible to construct problems in which this slows down the computation, but
this occurs rarely. In the case of algebraic algorithms used in this example, two
techniques are compared encoding expressions for uniqueness thereby avoiding
redundant values plus the saving of derivative values. Both of these ideas are
used in the Maple system. How does our best time of 1.7 seconds compare to

Maple?
The simplest Maple program we came up with (including the printing of

timings) looks like this:

f :% proc (z.n) it (n=o) then z olso ln(t.n-1)) fi; end:
st:a tio() :

answer:=diffCiCx,$).x,x,x,x.x,x):
time()-st;

4
"li

4,.

Maple's time for this on a Sun-3 is an impressive 1.67 seconds. Thus on a
VAX 8600 we would expect it to be about 0.8 seconds. Although these times
tend to be difficult to reproduce exactly, it appears that for this problem, Maple
is about 2 to 5 times faster than Macsyma when the Macsyma user "tunes" the
code and as much as 40 times faster when Macsyma is used in the most natural
and naive formulation.

3

4 Additional Notes

We have been studying this particular contrived problem and other calculations
for potential execution by multiple processors. Introducing hash-coding or some
other technique for recognizing unique subexpressions has implications not only
for serial computation, but for multi-processor speedups. That is, a problem
which can be naturally divided into different components each stored in a hash-
table can be operated on in a tabular rather than tree-like organization. We
expect this to be a more natural organization for a multiprocessor system.

As an additional note, when we first took up this problem, we thought it
would be interesting to try to formulate parallel processing approaches for this
computation.

Of all the formulations presented here, the slowest appears likely to benefit
most directly by parallel processing, where the massive redundant simplifications
could be done in parallel. Had we not looked further to improve the serial
algorithm, we could have written a paper on achieving substantial speedups by
parallelism. It is unlikely that a significant speedup can be found for the better
formulations unless we develop an algorithm for computing the 6th derivative
which does not first compute the 5th (etc.).

5 Conclusion

Choice of algorithms and data structures represent critical issues for symbolic
computing systems. Although one cannot always expect such dramatic differ-
ences as here, the default automatic choice for this problem is far better in Maple
than in Macsyma; Macsyma can, however, be prompted to make an improved
choice.

6 Acknowledgments

This work was supported in part by the Army Research Office, grant DAAG29-
85-K-0070, through the Center for Pure and Applied Mathematics, University
of California, Berkeley, and the Defense Advanced Research Projects Agency

$The naive formulation on Macsyma is not the slowest system we have tried: Mu-math,
running on an IBM PC-XT is about 2000 times slower than Maple on a Sun-3.

5

AY

(DoD) ARPA order #4871, monitored by Space & Naval Warfare Systems
Command under contract N00039-84-C-0089, through the Electronics Research
Laboratory, University of California, Berkeley.

References
[1R Fateman, R.J. (June 20-28, 1978), Macsyma's General Simplifier: Philoso-

phy and Operation. In Lewis, V.E. (ed) Proceedings of the 1978 Macsyma

Users Conference. Washington D.C., 563-582.

[2] Char, B.W. et al. (June 1984). On the Design and Performance of the
Maple System. Department of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada, CS-84-13.

6
iV.,

Figure 1I- Time in ins. to compute 6th derivative of nth nested Iog(x)

1000000 _________________________

100000 -______ 0- naive

10000 - OF _ -0. naive+rat

____ ____ ___ ______gradef

.1- rat

1000 A _____________

-A- naive+long gradef

-nor-- rat+Iong gradef

2 3 4 5 6 7 8

Nesting Depth

- i

Figure~~~ ~ ~ ~ ~ 2.*. Tiei sA-cmuenhdriaieb at&so ehd

1000

1000

Jog.

Figur 2o A (fTmanst.t)om ue nh deiaie byfs lo eh d

10000

1 2 3 4o~ (slow)

10000ati0

